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An Improved Version of Marti's Method 
for Solving Ill-Posed Linear Integral Equations 

By Heinz W. Engl and Andreas Neubauer* 

Abstract. We propose an algorithm for solving linear integral equations of the first kind that 
can be viewed as a variant of Marti's method; as opposed to that method, our algorithm leads 
to optimal convergence rates (also with noisy data). 

1. Introduction. Throughout this paper, let X and Y be real Hilbert spaces, 
T: X -* Y a bounded linear operator with nonclosed range. Then the problem of 
determining the " best-approximate solution" of 

(1.1) Tx = y 

is ill-posed: The best-approximate solution exists only for y E D(Tt) = R(T) + 
R (T)' (which we assume from now on) and depends discontinuously on the 
right-hand side. Here Tt is the Moore-Penrose inverse of T (see [12]); the best- 
approximate solution is defined as the element of minimal norm that minimizes the 
residual Tx - yll and can be written as Tty. A prominent example for the ill-posed 
case of (1.1) is a Fredholm integral equation of the first kind. Ill-posed problems 
have to be solved by regularization methods, e.g., Tikhonov regularization. See [7] 
and [14] for more background. 

An algorithm that has been used successfully in recent years is "Marti's method" 
(see [9], [10], [11]). In this method, a sequence of finite-dimensional subspaces 

VI c 12C 3 c ... of X with UnEN Kn = X is used to compute approximate 
solutions of (1.1) as follows: 

Let, for all n E N, 

(1.2) an = inf{|T-l/ n 
Pn be the orthogonal projector of X onto Vn, and bn > 0 be chosen such that 

IIPnTty - TtyII (1.3) lim b =0, lim bn = 0 
II--+ 0? b 00 

holds. Then xn is defined by 

(1.4) Xn EVn 

(1.5) 1 Txn - Y1 a< + bIl, 
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(1.6) lxn II = inf{ IIx II/x E Jn and x fulfills (1.5)}. 

This is Marti's algorithm as given in [11]; originally ([9], [10]), the right-hand side of 
(1.5) was (an + bn)2 and the algorithm was formulated only for y E R(T). The 
remarks of this section apply to both versions of the algorithm. 

Marti proved that {xn } converges to Tty as n -x o and that 

(1.7) I1xn - Ttyll = o(Fbn) 
if 

(1.8) Tty E R(T*) 

holds, which can be interpreted as an a priori smoothness assumption about the 
(unknown) exact solution. By T * we denote the adjoint of T. 

Incidentally, in [8] it is claimed that Marti's results are wrong as stated; this 
statement is formally correct if applied to [9], since there the condition (1.3) is 
missing. However, this condition appears in [10], and the results in that paper are 
correct. It has to be pointed out that the authors of [8] quote [10], so that their claim 
that Marti's result is in error and that they corrected it is not justified, since Marti 
himself had corrected his error before them in [10]. Moreover, it is easy to see where 
the error in [9] is: There, (5) is wrong, since (in the notation of that paper) PmfO need 
not be in V". From there, one can immediately deduce the condition that is added in 
the corrected version of Marti's result ([8, Theorem 2.5]). 

In [7, Section 4.3], C. W. Groetsch has given the following alternate formulation 
of Marti's algorithm: 

xn is determined by 

(1.9) atnxn + Tn*TnXn = Tn*Y, 

(1.10) 112Tx - = an + b 2, 
where 

(1.11) Tn := TI~n. 

Note that (1.9) is just Tikhonov regularization, where the regularization parameter an 
is determined from (1.10), which can be interpreted as a "discrepancy principle" (cf. 
[13], [7, Section 3.3]). In view of [5] it cannot be expected that the convergence rate 
in (1.7) can be improved, even under stronger smoothness assumptions. However, 
our results in [2] and [3] can be used to modify (1.9), (1.10) (and thus Marti's 
method) in such a way that the convergence rate in (1.7) is improved to the best rate 
one can reasonably expect. 

2. Main Results. As in Marti's method, let V1 C V2C V3 C ... be a sequence of 
finite-dimensional subspaces of X with U nN Vn = X. For each n E N, let 

(2.1) Yn = jI(I -Pn)T*I 

where Pn is the orthogonal projector of X onto Vn, and let yn Ee Y with 

(2.2) 11Y Yn11 -< Sn 8 
where the sequence { an } is assumed to be known. Let { bn } be a sequence in R +; we 
assume 

(2.3) lim bn = 0, lim Sn = O 
n - oc n f- o 
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Further properties of { bn } will be fixed below. For each a > 0 and n E N we denote 
by x48a, the unique solution of 

(2.4) ax+ Tn*TnX =Tn*Yn 

in JY, where Tn is as in (1.11); with this definition, let 

(2.5) pn(a):= ||Tn*TnXn-,a- Tn*yn- l 
2 

Note that pn depends also on yn and hence on An, which is the norm of the data error. 
In our variant of Marti's method, the data error will be included from the beginning, 
since despite its different origin, it can be treated the same way as the approximation 
error symbolized by bn. 

Let DJ, D2 be positive constants, and p, q > 0 be parameters that are fixed later. 
In our algorithm, xn ,= en is defined as the unique solution of (2.4), where a is the 
solution of 

(2.6) pn(a) = (Dlbn + D28n)Pa-. 

This can be seen as a variant of Marti's method as formulated by (1.9), (1.10) in the 
following sense: 

The equations (1.9) and (2.4) are identical except that in (2.4) we only use the 
approximation yn for y; as can be seen from [7, (4.3.5)], (1.10) can also be written as 

(2.7) x- = b 
2 

where Qn is the orthogonal projector of Y onto T(Vn). If we replace the residual in 
(2.7) by the residual of the corresponding finite-dimensional normal equation, we 
obtain (2.6) with An = 0, D1 = 1, p = 2, and q = O. 

From now on we denote by x4&n and x, always the unique solution in Vn of (2.4) 
and (2.4) with yn replaced by y, respectively, where a is determined by (2.6); this a 
will also be denoted by an. Of course, these quantities depend on p and q. We will 
determine p and q in such a way that the convergence rate IIx- - TtyII is best 
possible. 

To exclude trivial cases, we will always assume that 

(2.8) T*y # 0 and Tn*yn #0 . 

where the latter assumption follows from the first when n is sufficiently large. The 
first result shows that our algorithm makes sense: 

PROPOSITION 2.1. For any p, q > 0, (2.6) is uniquely solvable. 

Proof. It follows from [4, Lemma 3.1] (cf. also [7, Theorem 3.3.1]), applied with Tn1 
Vn and yn instead of T, X and b6, respectively, that Pn is continuous, strictly 
increasing and that 

lim pn(a) = 0 and lim pn(a) n 
a-0 a- +oo 

because of (2.8). Thus, the assertion follows from the Intermediate Value Theorem. 

Since x4&n and x, minimize the Tikhonov functionals 

x _ 1- 
2 

+ anlIXII and x - -ITx- l + anlIXII 
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respectively, over the subspace Vjn, we obtain from [7, Lemma 4.2.7] that 

(2.9) ||X '7 - XnII < an a1/2 

For the same reason, we can use [7, Lemma 4.2.3] to obtain 
2 1/2 

(2.10) IIx - xa,Il < 1 + 
Yn 11( - |(I-Psw) 

where yn is defined in (2.1), and where 

(2.11) xa:= (T*T+ aI)-'T*y 

is the approximate solution obtained from infinite-dimensional Tikhonov regulariza- 
tion; of course, xa is not used in our algorithm, which is strictly finite-dimensional. 

LEMMA 2.2. limn an = 0. 

Proof. One shows, as in the proof of [2, Lemma 2.2], that if {an } would have a 
subsequence (again denoted by { a, }) with 

(2.12) lim an =+ x 
II -? 00 

then this would imply 

(2.13) lim Xn = 0, 
II -_+ 00 

and hence 

(2.14) lim pn (an) = IT *YII 
n - oo 

because of (2.2), (2.3) and the facts that Tn* = PnT * and P, I pointwise. Hence 

0 = lim (Dbn + D2Y) = lim (a?q*p(a.))= ? 
II _ 00 n - o0 

because of (2.12), (2.14), and (2.8), which is a contradiction. Thus, (2.12) cannot hold 
for any subsequence, which implies the boundedness of { a, }. 

Now assume that 

(2.15) lim an = a > 0 
n - oo 

holds for some subsequence (again denoted by { an }). Then 

lim (Tn*Tn + anI) 'Tn* - (Tn*Tn + aI) 'Tn* = 0, 

so that 

(2.16) lim x~n - (Tn*Tn + aI) 1'Tn*y = 0. 
11--+ 00 

Because of [7, Lemma 4.2.3], 

(2.17) (Tn*Tn + aI) 'Tn*y - Xa < 1 + Yn 'I(' - Pn)Xall 9 

where xa is as in (2.11) with a as in (2.15). Since the right-hand side of (2.17) tends 
to 0 as n -x o, (2.16) and (2.17) imply 

(2.18) lim xn' - X| = 0. 
1 -? 00 
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Since, as easy calculations show, 

(2.19) p (a) = a . , 

holds for all a > 0, (2.18) implies together with the definition of an that 

0 = lim (Dlbn + D2AY)P = lim (a q+2 xI 
all) =aq+2lx 

n f X n - oo 

which implies xa = 0 in contradiction to (2.8). Hence (2.15) cannot hold for any 

subsequence, which proves the lemma. C1 

LEMMA 2.3. If 0 < p < 2q, then limn > *1) = 0. 

Proof. Since xn', minimizes the functional x -- IITx - QnYn1I2 + an IxII2 over Vn/, 
where Qn is the orthogonal projector of Y onto T(Vn) (and hence Tn*Qn = Tn*), we 

have 

0 < pn (an) < II Tn* II * I I Tn Xn"'7- Q 2nYn || + nIXn' 2| ] 

< II T12 *|TPnTty - QnYn 2 + anIITtYII2 ]- 

Since PnTty - Tty and Qn converges pointwise to the projector of Y onto R(T), 

i.e., to the extension of TTt onto Y, IITPnTty - QnYnII -- 0. This implies, together 
with the last inequality and with Lemma 2.2, that lim X pn(a n) = 0. Hence, 

o < SP* ? a-p12 < D7-P * (Dlbn + D2Sn) * anp2 = D2 - a qP/2 . 

the last expression tends to 0 as n -x o because of the first part of this proof, 
Lemma 2.2 and the assumptions on p and q. Hence limnx n n = 0, which 

implies the assertion. C 
The next result, where a condition on { bn} -the analogue of (1.3) in Marti's 

method-is introduced, shows that for a wide range of p and q, our method 

converges. 

THEOREM 2.4. Let 0 < p < 2q and assume that 

(2.20) Yn = ? ( bnp/ q ) 9 

where yn is defined in (2.1). Then lim nx = Tty 

Proof. We first show that 

(2 .21 ) { Y,2/atn } is bounded. 

To see this, note that (cf. the proof of Proposition 2.1) 

(Dlbn + D28n)Pa -q = pn(a) <II ~TI2 .(Ilyl + S) ( Dbn D2n )P (n q n((n ) < 11Tn*Yn 11 <1 Tl I 1 T 

hence an > C(Dlbn + D28n)p/q for all n e N with a suitable C > 0. Together with 

(2.20), this implies (2.21). Now, 

X8- - 
Tty|| < ||Xa" 

- 
Xn|| + ||Xn 

- Xodl + ||x0s7- Ttyjj, 

where xa, is defined by (2.11) for a = an. Because of (2.9) and Lemma 2.3, the first 

term of this estimate tends to 0. Because of Lemma 2.2 and standard results about 

infinite-dimensional Tikhonov regularization (see, e.g., [7, Sections 2.1 and 3.1]), the 

third term tends to 0. Because of (2.10), the second term can be estimated as follows: 

||x -XesIl < (1 + Yn 
.41/ I [1(1- Pn) I II'Xa - TtyII + I(I - Pn)Ttyll] 
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which tends to 0 because of (2.21), the convergence of xa, to Tty and the fact that 
{ Pn } I pointwise. This implies that { xn' } Tty. El 

Now we proceed to give estimates for the rate of convergence for various choices 
of p and q. For this, we need the following estimate: 

LEMMA 2.5. Let the assumptions of Theorem 2.4 be fulfilled. Then there exist 
constants C1, C2 > 0 such that for all integers n, C1 < (Djbn + D2S-)Paq-2 < C2 
holds. 

Proof. Because of the definition of an and (2.19), (Djbn + D2n)Paot-q-2 = 11 112, 
which converges to lITtyll 2. Together with (2.8), this implies the assertion. E 

As usual with ill-posed problems, convergence rates can only be obtained under a 
priori assumptions about the exact solution: 

THEOREM 2.6. (a) Assume that (1.8) holds, and let p - 2 = q > 2 and 

(2.22) Yn = O(b'12+11q) 

Then Ijxln - TtyII = O((bn + a)1/2) 

(b) Assume that 

(2.23) Tty E R(T*T) 

and let 2p - 2 = q > 1 and 

(2.24) (n = { O(b1/3+2/3q) if q < 2, 
'Yn 

10(b 2/3) if q > 2. 

Then llxn" - TtyII = O((bn + )2/3)) 

Proof. Because of (2.9), 4xn -xn11 < D2 - (Djbn + D2An) a n/2. Since (2.22) as 
well as (2.24) imply (2.20), we can apply Lemma 2.5 and obtain with C1 and C2 as 
defined there: 

n- nl < C3 -(Dbn + D28n)l where C3 D21 . 

Hence 

(2.25) IXn8' - TtyVA < xn - Ttyll + C3 -(Djb, + D2 -2 2 

Now, assume p - 2 = q > 2 and (2.22) (and hence p < 2q and (2.20)). Because of 
Lemma 2.5, (Djbn + D2n)1"/2 = O(a (q+2)/2p) = O(al/2), and hence 

= (b -2+llq) = o(bl/2) = ((Dlbn + D2 1)"2) = - (al ) 

Thus, we can apply [7, Theorem 4.2.5] and obtain 

(2.26) I|xn - TtyII O(ln/2) 

Because of Lemma 2.5, 

a1/2 = o ((D1bn + D2n) p/2(q + 2)) = O((D1bn + D )1/2), 
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so that (2.25) and (2.26) imply 

||X8- Ttyll = o((Dlb, + D2 1)1/2) = O((bn + 8,)l/2). 

This proves (a). 
Now, let the assumptions of part (b) hold. Since also p < 2q and (2.20) hold, we 

can apply Lemma 2.3 and obtain 

(2.27) (Djbn + D2_n )2/3 = O(an) 

and 

(2.28) an = o((Dlbn + D28n)2/3) 

For q > 2, (2.24) and (2.27) imply Yn = O(an). For q < 2, we obtain the same result 
since bl/3+2/31 - O(bn2/3). Thus we can apply [7, Theorem 4.2.6] to obtain 

(2.29) ||xn- Ttyll = 0(an). 

The result of part (b) now follows from (2.25), (2.27), (2.29), and (2.28). E 
Remark 2.7. Theorem 2.6 shows that our method improves Marti's method in two 

ways: First, data errors are included. It can be easily seen from the proofs, that in 
(2.20), (2.22) and (2.24), bn could be replaced by (bn + 809 which yields (formally) 
weaker conditions. Second, our convergence rates are better than those for Marti's 
method. For simplicity, we discuss this aspect for error-free data, i.e., An = 0. We 
first look at part (a) of Theorem 2.6. If we choose q = 2, we obtain the rate O( bn), 
which becomes O(nYn ), if bn Y, i.e., if the correct asymptotic behavior of Yn is 
known. If we choose higher values of q, we can get arbitrarily close to the optimal 
rate O(yn); e.g., for q = 10 we can take bn ,Yn5/3 and thus obtain the rate O(.yn56). 
Of course, if we underestimate Yn, i.e., if we replace 0 by o in (2.22), we get worse 
rates in terms of Yn, which is not surprising. Note that yn represents the best possible 
convergence rate of elements in VJ toward solutions of (1.1) that fulfill (1.8). While 
in Marti's method, one can obtain at most the square root of the optimal rate (cf. 
(1.7)), we can come arbitrarily close to the optimal rate, even under the weak 
smoothness assumption (1.8). In Marti's method, a better convergence rate cannot 
be obtained under the stronger assumption (2.23) (cf. the concluding remarks of 
Section 1); Theorem 2.6(b) shows that we obtain the optimal convergence rate O(Yn) 
for q > 2 if we take bn - -y'.2 In the presence of data errors, the convergence rates 
are also best possible in terms of Sn (cf., e.g., [1]). 

If Sn = 0, one does not need the assumption p < 2q, which was needed in Lemma 
2.3. In this case, one can show that if (1.8) and (2.20) hold, then Ilxn - Ttyll = 

O(b P/2(q+2)); i.e., if one takes bn - Y 2q/P, then one obtains the rate Q( YqAAq+2)) for 
any choice of p, q > 0. In this case, (2.6) reads pn(a) = D - (yn2/a ) with a suitable 
constant D. 

Similarly, if 8 = 0 and (2.24) holds, and if either 0 < q < 2 and Yn = O(b /p2q) or 
q > 2 and Yn = 0(bnP(Aq?2)), then Ilxn - Ttyll = Q(bnpAq+2)) holds; i.e., if one takes 
b y ,2q/P for q < 2 or b - Y (q+ 2)/p for q > 2, one obtains the rates (y,2q(Aq+2)) 
for q < 2 and the optimal rate O(yn) for q > 2. The equation (2.6) then reads 

pn(a) = D - (yn2/a)q and pn(a) = D - Yq+2* a-q, respectively (with suitable con- 
stants D). 
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The proof of these statements follows along the lines of the proof of Theorem 2.6. 
For actual computations, the choice of D1 and D2 is of course important. Since we 

want to give convergence rates only, we do not enter into theoretical discussions on 
the choice of these constants (cf. [3] in a similar situation). In our computations, we 
chose D1 = D2 = 10 -6q/p, which turned out to be effective. 

3. Numerical Aspects and Examples. For computing the solution x6' of (2.4) and 
(2.6), one chooses a basis { V,... ,Vd(n)} of Jn, computes the d(n) X d(n)-matrices 
Bn := ((Tvi, Tvj)) and Mn:= ((viK, v)) and the vector wn:= ((Tvi, yn)). It is easy to 
see that if (a, X) E Rd(n)+l solves 

(3.1) (Bn + aMn)X = Wn, 

(3.2) aq+?2 TMnX = (Djbn + D2AY) , 

then xna = E4(2L)jXv1. Note that the system (3.1), (3.2) is very similar to the 
computational form of Marti's method (see, e.g., equations (3a), (3b) of [10]). Note 
that for obtaining (3.2), we used (2.19). 

Let for any a > 0, X(a) be the unique solution of (3.1), and 

(3.3) f(a):= aq+2; 
T 

( (a)-(Djbn + D28n) . 

One shows as in the proof of [3, Proposition 2.2]: f is differentiable, for all a > 0, 

(3.4) f' (a) = (q + 2)q+X(a) Mn;X(a) 

-2a q+2X (a)TMn(Bn + aMn)1Mn;X(a) > 0; 

for all q > 1, Newton's method 

(3.5) akl ak _ f(ak) 
f (ak) 

converges to the unique zero an of f (defined in (3.3)). The convergence is global, for 
k > 2 the iterates decrease monotonically to an. Obviously, the vector (an, /X(an)) 
solves (3.1), (3.2). The solution of (3.1) that is needed in each iteration of (3.5) is 
done by Cholesky decompositions. For finding a suitable sequence by, one needs 
information about yn (as defined in (2.1)); estimates for yn for spline spaces can be 
found, e.g., in [6]. In an analogous way, numerous estimates for the approximating 
power of finite-element spaces could be used to estimate yn. 

In our example, we choose Vn as a space of linear splines on a uniform grid of 
(n + 1) points in [0, 1]. As basis functions, we take vl,. . ,vn+l with the property 
that vi((i - 1)/n) = 1 and vi vanishes at all other nodes. The elements of Mn are 
computed explicitly, the elements Tvi are computed by Gaussian quadrature with 
two nodes on each subinterval [(i - 1)/n, i/n]. Finally, the scalar products needed 
for computing the elements of Bn are approximated by the trapezoidal rule. This is 
(nearly) identical to the procedure chosen in [9] and [10], so that it is fair to compare 
the results. All examples are Fredholm integral equations of the first kind on [0, 1] 
with kernel k: 

f k(t, s)x(s) ds = y(s). 
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Example 3.1. Here the kernel is always given by 

k(t, 5):= (?' t <s , 

(cf. the example in [10]). It follows from [6] that yn = O(n-2). 

(a) y(t) = 2(6t2-4t3 ? t4). The exact solution is (Tty)(s) = -1)2 E 
R(T *), since Tty = T *1. We use the variant of Theorem 2.6 given in Remark 2.7 
under the assumption (1.8) and choose p = 1, q = 2, bn:= n-8. According to the 
theory, we should obtain the convergence rate O(n-1). The results are as follows: 

n an en en n _ 102 

4 1.4*10-4 3.4*10-3 1.4 

8 3.4 * 10-5 1.1 * 10-3 0.90 

16 8.3 * 10-6 4.3 * 10-4 0.68 

32 2.1 *10-6 1.7 * 10-4 0.55 
64 5.2 * 10- 7.1 * 10- 0.45 

Here, en:= I1xn- Ttyll. The last column shows that the convergence seems to be 
slightly faster than O(n - l). 

(b) y(t) = 71 (t6 - 20t3 + 45t2), (Tty)(s) = (s4 - 4s + 3) E R(T*T), since 
Tty = T *T1. Choosing the parameters as in (a), the results outlined in Remark 2.7 
show that the convergence rate should be the optimal rate O(n - 2). This is in fact the 
case: 

n a e e *n 2 102 

4 2.5 *10-4 9.1 * 10-4 1.5 

8 6.3 *10-5 2.2 * 10-4 1.4 

16 1.6 * 10-5 5.2 * 10-5 1.3 

32 3.9 *10-6 1.2 * 10-5 1.2 
64 9.7 * 10-7 2.9 * 10-6 1.2 

(c) y as in (a); y is randomly perturbed by Sn = n-21jyII. We use Theorem 2.6(a) 
with bn = n-2, p = 4, q= 2. According to the theory, we should obtain the rate 

lxn '- Tty 11= O(n-) = Q(31/2) 

n a~n~?n en in n 10 

4 1.4*10-4 5.6 *10-2 2.2 

8 3.4*10-5 7.9*10-2 6.3 

16 8.8 * 10-6 3.1 * 10-2 4.9 

32 2.2 *10-6 1.3 *10-2 4.2 
64 5.5 *10-7 5.9 *10-3 3.8 

Here (and below), e := lix ' - TtyII. 
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(d) y as in (b); y is randomly perturbed by dn = n-311y1j. We use Theorem 2.6(b) 
with bn= n= p = 8/3, q = 2. According to the theory, we should obtain 

sn - TtyI - O(n-2)= =(82/3). 

n ~an en e.n 2 W-l n ~ ~ n nn2.0 
4 2.5 *10-4 3.6* 10 5.8 

8 6.1 * 10-5 2.1 *10-3 13 

16 1.5 * 10 -5 3.6 * 10 -4 9.3 
32 3.8 * 10-6 8.4 *10-5 8.6 
64 9.5*10-7 2.1*10--5 8.6 

Computations with larger values for S give comparable results. 
Example 3.2. Here the kernel is given by 

(') (l - t), t > S 

(cf. Example b) in [9]). Again, yn = O(n -2). 

In parts (a)-(d) of this example, the same choices of the relevant parameters are 
made and the same statements about convergence rates hold as in the corresponding 
parts of Example 3.1. 

(a)y(t) = 2(t - 2t3 + t4), (Tty)(s)= 2(S - S2). 

n anen e n *n102 

4 2.1 *10-4 4.0 *10-3 1.6 

8 5.2 * 10-5 1.4 *10-3 1.1 

16 1.3 * 10-5 5.5 * 10-4 0.88 

32 3.3 *10-6 2.2 *10-4 0.72 
64 8.1*10- ' 9.3*10-' 0.60 

(b) y(t) = 3(3t -5 t3 + 3t' + t6), (Tty)(s) = s - 2s3 + s4. 

n en e n 2 *102 

4 1.4* 10-4 6.2 *10-3 10.0 

8 3.4* 10-5 1.5 *10-3 9.6 

16 8.3 *10-6 3.7 *10-4 9.5 

32 2.1 *10-6 9.3 *10-5 9.5 
64 5.2*10-7 2.3*10- 9.6 
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(c) y as in (a); y is randomly perturbed by an = n-211yI. 

n an en in n 102 

4 2.0*10-4 8.3*10-3 3.3 

8 5.3 *10-5 1.5* 1-2 12.4 

16 1.3 *10-5 6.2 *10-3 9.8 

32 3.3 *10-6 2.6 *10-3 8.2 
64 8.3 * 10-7 1.3 * 10- 8.3 

(d) y as in (b), y is randomly perturbed by 3n = n-3IlyI1. 

n a ens n2. 1o 

4 1.3 *10-4 5.8 *10-3 0.93 

8 3.3 *10-5 3.8 *10-3 2.4 

16 8.2 *10-6 8.3 *10-4 2.1 

32 2.0 *10-6 1.8 *10-4 1.8 
64 5.1 #10-7 4.1 * 10- 1.7 

Again, computations with larger values for n give comparable results. 
(e)y(t) = 6(t - t3), (Tty)(s) = s. Note that (1.8) is not fulfilled. Nevertheless, we 

use the same parameters (except for the values of DI and D2) as in (a) and obtain: 

n an en en * n1/2 * 10 

4 2.8 *10-6 2.7* 10-1 5.37 

8 6.8*10-7 1.9*10-' 5.38 

16 1.7 *10-7 1.4*10 5.40 
32 4.1 *10-8 9.9* 10-2 5.58 

The last column shows that instead of the rate O(n-1), which would be achieved if 
(1.8) were fulfilled, the rate seems to be O(n - 1/2) here. Incidentally, the errors are 
significantly larger than in (a) and a bit (but not much) smaller than in [9, Example 
c]. This confirms Marti's observation that for this example, Tikhonov regularization 
using the L2-norm is not good. If one uses Tikhonov regularization using llx"112 
instead of ix 112, the results are better (cf. [3, Example 2]). 
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